

Date Planned : / /	Daily Tutorial Sheet-2	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :		

, , ,			<u> </u>	_		(7.11.0111.1.0)				
16.	Rate o	of diffusion of a	gas is:						(1985)	
	(A)									
	(B)	directly proportional to its molecular weight								
	(C)	directly proportional to the square root of its molecular weight								
	(D)	inversely proportional to the square root of its molecular weight								
17.	Kineti	ic energy of a molecule is zero at 0°C.T/F (1985)								
18.	The ra	rate of diffusion of a gas is proportional to both and square root of molecular mass. (1986)								
19.	The a	Γhe average velocity of an ideal gas molecule at 27°C is 0.3 m/s. The average velocity at 927°C will be:								
	(A)	0.6 m/s	(B)	0.3 m/s	(C)	0.9 m/s	(D)	3.0 m/s	(1986)	
20.	A sph	erical balloon	of 21 cm d	liameter is to b	oe filled ur	with hydroger	n at NTP t	from a cylind	ler containing	
-0.		A spherical balloon of 21 cm diameter is to be filled up with hydrogen at NTP from a cylinder containing the gas at 20 atm and 27°C. If the cylinder can hold 2.82 L of water, calculate the number of balloons								
	_								(F) (1987)	
21.	The va	alue of pV for 5	5.6 L of an	ideal gas is	RT, at N	ΓР.			(1987)	
22.	A bott	le of dry amm	onia and a	bottle of dry h	nvdrogen c	hloride connec	ted throu	gh a long tul	be are opened	
-2.		A bottle of dry ammonia and a bottle of dry hydrogen chloride connected through a long tube are opened simultaneously at both ends. The white ammonium chloride ring first formed will be: (1988)								
	(A)	at the centre			(B)	near the hyd			(,	
	(C)	near the ammonia bottle			(D)	throughout the length of the tube				
23.										
23.		In van der Waals' equation of the state for a non-ideal gas, the term that accounts for intermolecular forces is: (1988)								
						(a)		, _{>-1}	(1000)	
	(A)	(V – b)	(B)	RT	(C)	$\left(p + \frac{a}{V^2}\right)$	(D)	(RT)		
24.	8 g ea	each of oxygen and hydrogen at 27°C will have the total kinetic energy in the ratio of (1989)								
25.	A gas	will approach	ideal beha	vior at :					(1989)	
	(A)	low tempera	ture and l	ow pressure	(B)	low temperat	ure and h	igh pressure	•	
	(C)	high temper	ature and	low pressure	(D)	high tempera	ture and	high pressur	e	
26.	The v	The value of van der Waals' constant α for the gases \rmO_2 , \rmN_2 , \rmNH_3 and \rmCH_4 are 1.360,1.390, 4.170 and								
	2.253	$2.253~{ m L}^2$ atm mol $^{-2}$ respectively. The gas which can most easily be liquefied is : (1989)								
	(A)	O_2	(B)	N_2	(C)	NH_3	(D)	CH_4		
27.	The a	The average velocity at T_1K and the most probable at T_2K of CO_2 gas is $9.0 \times 10^4~{\rm cm s}^{-1}$. Calculate the								
									(1990)	
28.		ensity of neon	will be hig	hest at:					(1990)	
- 0.	(A)	STP	win be mg	most at.	(B)	0°C, 2 atm			(1990)	
	(C)	273°C , 1 at	m		(D)	273°C, 2 atr	n			
	,	0 , - 40			\- <i>,</i>	,				

- **29.** Calculate the volume occupied by 5.0 g of acetylene gas at 50°C and 740 mm pressure. (1991)
- **30.** According to kinetic theory of gases, for a diatomic molecule (1991)
 - (A) the pressure exerted by the gas, is proportional to mean velocity of the molecule
 - **(B)** the pressure exerted by the gas is proportional to the root mean velocity of the molecule
 - (C) the root mean square velocity of the molecule is inversely proportional to the temperature
 - (D) the mean translational kinetic energy of the molecule is proportional to the absolute temperature